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Abstract

We treat the 'approximately' optimal control problem for tandem queueing

or production networks (with local feedback allowed) under heavy traffic. The

buffers (scaled with traffic) are finite. The controls allow various inputs,

connecting links and the processors to be shut down or opened, in order to

manage the system. The service and arrival rates, as well as the routing

probabilities can also be controlled, and the system statistics can depend on the

system state (scaled buffer occupancies). The associated costs involve holding

costs, costs for shutting off/on the links or processors and the opportunity cost

for lost production. It is shown that the (scaled) controlled system converges

weakly (in an appropriate sense) to a controlled limit 'reflected' diffusion. In

the rescaled time, the actions of the controllers lead to multiple 'simultaneous'

impulses in the limit problem. Thus we have a non-standard limit control

problem, and the usual methods of weak convergence for systems under heavy

traffic must be modified. Since the optimal or nearly optimal controls for the

physical process are usually not possible to get, it is of considerable interest to

know whether an optimal or nearly optimal control for the limit process is also

nearly optimal for the physical system with heavy traffic. This is shown to be

true, under reasonable conditions. Although the limit control problem is

non-standard and there is little available theory concerning it, acceptable

numerical procedures are available.

Key Words: Weak convergence, queueing networks, production networks, heavy
traffic approximations, controlled reflected diffusions, controlled queueing
networks, approximately optimal stochastic controls, -numerical methods for
stochastic control,
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I. Introduction

We consider optimal and 'nearly optimal' control problems for the open

queueing networks in heavy traffic of the type dealt with in the fundamental

papers of Reiman [!] and Harrison,[2], [3]. Owing to the state and control

dependence (in our problem) of the routing, arrival and service time processes,

as well as to our use of finite buffers, and to some approximations which are

used in [1] - [3] in the modelling in these papers, much of their methodology

cannot be carried over. We do try to retain their structure and results

wherever possible. One of the main motivations behind the heavy traffic

approximations [I] - [4] of queueing networks is the idea that the limit process

(which is a reflected Brownian motion in the past work, and a more general

impulsively or singularly controlled reflected diffusion here) is easier to analyze

than the actual physical process, and that it is much easier to find good or

optimal control policies for the limit than for the physical process. This is

undoubtably true, particularly if the traffic is truly heavy the buffer size large

or if the routing parameters and input and service times are correlated or state

(queue size) dependent.

In [1], one has several interconnected service or processing stations, and at

each there is an infinite buffer (ours is finite, but suitably scaled with traffic

intensity). At each there are possible arrivals from outside the network as well

as arrivals routed from other service stations. The departures are routed

(perhaps randomly) to other service stations (perhaps to one that they had

previously visited) or leave the network. Eventually (w.p.l) all customers leave

the network. Under reasonable conditions on the interarrival and service times

11 jil61,1
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and with appropriate spacial and temporal normalizations, in the heavy traffic

case the vector of the normalized queue lengths (the normalized number in the

buffers plus in service) converges weakly to a reflected Brownian motion with

constant drift and covariance parameters [1]. This will be generalized here in

several directions, although we work with a somewhat simpler network

structure.

Although it underlies a lot of the motivation for the limit theorems, there

seems to have been very little work on the usefulness of the limit process for

purposes of getting a good or nearly optimum control for the physical process.

Let E index the traffic intensity. As c - 0, the 'intensity' goes to -. For

whatever cost criteria is used (this will be defined in later sections), let VE(n)

denote its value for the physical system when a policy n is used. Suppose

that WE is an 'adaptation' of the optimal (or 5-optimal) policy for the limit,

applied to the physical process. (We will say more about such adaptations later.)

For W( to be a 'good' policy for the physical process we need at least that

V -('
)  inf V (7) be small for small c, where the inf is over an

77

appropriate set of policies for the physical process. This is the problem

addressed here. In the course of the development, a number of interesting and

non-classical problems arise; for example, the appropriate 'limit' control problem

might involve multiple 'simultaneous' impulses, and we must treat state

dependent service, arrival and routing processes.

There are many possibilities for the structure of the control problem. Ours,

to be described below, illustrates the main problems and develops a (weak

convergence based) method which applies to many other formulations. We are

forced to differ in several important respects from models used in earlier work

:dL:X&
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on the limit theorems for queueing networks in heavy traffic. If the service or

arrival rates can be controlled, then the limit process is no longer a reflected

Brownian motion with constant coefficients; we wish to allow these rates to

depend on the system state; we must deal with (implicitly or explicitly) a

dynamically controlled upper bound to the buffer size. (Even if the buffer size

is infinite, the optimal control might force it to be shut down); owing to the

control, there might be 'travel' along the boundaries; some controls (e.g., on/off

controls with associated impulsive costs) might yield nice process paths in 'real'

time but in the usual interpolated time (i.e., for the sequence for which we seek

the weak convergence) the paths between the on/off times move faster and

faster as E -. 0 and converge to a discontinuity - but not in the Skorohod

topology; the nature of the convergence at these discontinuities can yield (an

interesting) limit process with 'multiple simultaneous impulses'; the lumping

together of all idle times as done in [1, eqn(3)] in the Bk(t) argument is a

useful 'approximation', but it is inappropriate in our context owing to the state

and control dependencies, and is not quite the exact physical model in any case

(although it yields the correct results); to show that the 'limit' controls and

other quantities are 'admissible', or non-anticipative with respect to the limit

Brownian motions or reflected diffusions, we need an approach that is at least

partly along the lines of the martingale method. In fact, we combine the ideas

of [1] with those of the martingale method and the weak convergence techniques

of [5], [6].

The work here is a continuation of the lines of development in [6], [7], [8]

where approximations to other optimal control problems are dealt with. Owing

to the special features of the controlled heavy traffic network of queues, this
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past work is not applicablc to this problcm without major change. We refer to

it whcrc helpful in simplifying or reducing an argument.

In Section 2, the basic system is described, the control problem defined

and assumptions stated. Many of the results are true for controlled networks

allowing general feedback as in [1]. But, in order to avoid some quite

complicated bookkeeping, we eventually specialize to a tandem case - with only

two processors and feedback only allowed from a processor to itself. The

general results can be readily extended to problems where (except for the

possibility of rerouting an output back to the input of the same processor), the

flow is all 'forward'. In Section 3, we discuss representations for the processes

which facilitate the weak convergencc analysis, and in Section 4, we describe

the proper 'limit' control problem (and some of its peculiarities), i.e., the

appropriate controlled reflected diffusion whose optimal (or B-optimal) controls

are to be used for the physical process.

Section 5 contains the basic weak convergence results, and we state and

prove the results concerning the 'almost optimality' of the 6-optimal (for small

6) controls for the limit process, when applied to the physical process. Some

computational questions are discussed in Section 6. Although the 'limit' control

problem is not always simple, effective and convenient numerical methods are

available.

el
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2. Problem Description and Assumptions

We start by describing a network with K service stations (processors),

the ith referred to as Pi Each processor services only one customer at a time

(although, as will be seen from the development in the sequel, batch or multi

server cases can all be handled and even controlled. Shortly, we specialize to

the case K = 2, but it is simpler to first use a unified terminology. We retain

the basic interconnection structure of [1], but use a discrete time parameter for

notational simplicity. Each processor can be connected to an external input as

well as receive (and deliver) outputs from (to) other processors.

Let ( E) denote the sequence of interarrival times of the customers
n

coming from the exterior of the network directly to Pi, and let ti' denote

the indicator of the event that there was an arrival from the exterior to Pi at

time n. As is frequently done (e.g., as in [1)), we adapt the convenient

representation where the processor keeps processing even if the queue is empty,

with the 'errors' generated by this convention accounted for by an added

reflection term. With this convention in mind, let ({&',E) denote the sequence

of service times for Pi. and in'C the indicator of the event that a service at

Pi is completed at time n (whether or not there are actual 'physical'

customers in Pi at that time). As in [1), we suppose that if there is an
arrival to Pi in the midst of a service interval when the queue at Pi is

empty, then the actual service time for that customer is just the residual service

time for the current service interval. Under the heavy traffic assumption, this

does not affect the limit formulas. Let 0i ' q i -, 1, K, j = 0,.. K, denoten

the indicator function of the event that a completed service at Pi at time n

AS%

7....
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is scheduled to be sent to Pj (or to the exterior, if j = 0). We use (Pij. i =

1,. .,K} to denote the probability that a completed service from Pi is to bc
K

routed to P, and write pio = I - E Pij" The buffer size at Pi is Bi/v'F, for
* j=l

Bi> 0.

The allowable control efforts are as follows. We work with impulsive

controls only, although the results can be extended to the case where the service

and interarrival 'rates' as well as the routing probabilities are controlled

contiuously. The processor Pi can be shut off for a time, at a cost k i > 0,

to be paid at the moment of shut off. The external inputs to Pi can be shut

off for a time, at a cost k0 i > 0, to be paid at the moment of shut off. If P1

communicates to P, in lieu of shutting Pi off, we can open or break the
link connecting Pi to P. In that case the output of Pi which is destined

for P. will be shunted to the exterior and lost, or sold as a 'partially

completed' product. The cost for shutting the link off is kij > 0, to be paid at

the moment of shut off, and there will be an additional cost for the lost

customers. This cost is q ij ve" per lost customer, qij > 0. By convention, we

allow all customers in Pi who have completed service there and are destined

to return to Pi immediately to do so. If the buffer of Pi is full, then one

or more inputs must be turned off, i.e., either the input links to Pi are

shunted to the exterior, or the P. connecting to Pi are shut off.

The bulk of the work will use the above control possibilities. The

extension to the case where the marginal service or external arrival rates (or

even the routing probabilities) are controlled is not a difficult extension and is

discussed at the end of the paper.

Let Pni' POi'' and pj i,n, resp., denote the indicators of the events that
n n n

J
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Pi is working at time n (i.e., processing or not shut off), the external input

to Pi is not shut off at time n, and the link connecting P to P is

open at time n, resp. Let N ' 6 (resp., N' E) denote the n th time that P is

turned off (resp., turned back on), and set NOE = 0. Let N'J' (i = 0.1,

,K, j = 1,-,K) (resp., N ,J) denote the n' time that the link connecting

Pi to P. is shut off (turned back on, resp.) (If i = 0, then it's for the link

,* connecting the exterior to P .) Define v i ,E = EN' ,E, v i j '  = EN' j': and

similarly define V' c  and V.ij,6
n n

Let X',E = yr [Number of customers in or waiting for .ervice at Pi at

time n] and set Xi.E(t) = .E This is the quantity of interest in the desired

interpolated time and amplitude scale. Then, in this interpolated scale,

, 
in ,  ni, n ) 1, etc., are the intervals of closure of Pi, etc. When ratios t,,e

% are used as indices, we use the integral part. Until Sections 5 and 6, w.l.o.g.,

and for notational convenience, we always assume that all processors and links

are working at t= 0. Thus vo'  0 and V ', > vc' , for n > 0. In

general, it is possible that vtE = 0 also (instantaneous change in the system

at the starting time). The optimal value function will depend on the initial

system configuration, and the true state of the system is actually the pair (Xn,

status of links and processors). We return to this in Section 5.

In order to keep track of the flows in the system for purposes of the

control problem and the limit theorems, we need to separate out the corrections

to the flows due to empty queues and to the flow components due to the

contro! actions. Throughout the paper. c-superscripts will be omitted in the terms

in sums or integrals. The subscript c is for 'combined', since we use it when

there is a condition on the status of two controls simultaneously. Define

Li.'" ' " - ' ": " :i- : - :', ; : ::;:



-8-

(2.1a) YEJ(t) = 5 II P" I
n=1

t/E

(2.12b) uiii'l(t)= E n I J(I - pn)Io i  0 0, jnnn

n=1t/C

(2.2b) u i'(t) = E ti (I - Pii ), i J 0 i

(2.2b) M=V E li (IP Pl _D i S
Cn nl nl

n=1 j 0

t/E 
t/E

(2.3) AIi,( - , D i J(t) M = ..
1  Ii 

i

n=1 n=1

t /

(2 .4 ) A= M 1 9 I i ( 1 - P P E l , i , i,j SO .n nlf XO

n=1

With the definitions (2.1) to (2.3), we can write

(2.5) Xi'(t) = Ai'(t) + E DJi'(t) - E D'"(t)
ji ji

+ E yij,,E(t) _ 1: yjif (t) - ui'(t)
jfi ji

+ E UiJ'E(t) - : Uji ' (t).
j'i joi

The first term in (2.5) represents the potential external arrivals to Pi. the

second represents potential arrivals from other Pj, j P i, all neglecting the

effects of controls or empty queues. The third term represents potential

departures from Pi, again neglecting the effects of controls or empty queues.

The other terms correct for these omissions. The yiE( .) corrects for

departures from Pi when Pi is working and its queue is empty, and the

RV, I
%r'-



y i.(.) corrects for arrivals to Pi from P. when the buffer of P, is

empty and neither P. nor the link from P. to Pi is shut off. The

uoi''(.) corrects for the stopped external arrivals, when the input to Pi from

the exterior is shut off. The U'J(( ) corrects for the stopped departures from

Pi when P. is closed, and the Uji,(.) corrects for the stopped arrivals
I I C

from P. to Pi when either Pj is not working or the link from Pj to Pi

is shut off (i.e., shunted to the exterior).

The ZiJ'e( • ) represents the lost output when the link from Pi to PJ

is shunted to the exterior. There can only be lost output at time n if

X ' - > 0 and Pi '
t  = I (as well as pij,e = 0). Write X' = (X ' , .,XKE)

and let nt or 7n denote control policies (i.e., rules for determining the viE,

Vi, viJ,(, Vij,6), and let E n  denote the expectation, given policy n and
x

initial condition X6 E x. Let P denote the vector of indicator functions

0

(P' of the processors and links, in general, the value function depends on

the initial value of P (although we set (w.l.o.g.) the initial values PC = Ir0
until Section 5). Then, for a bounded and continuous k(.) and 8 > 0, our

cost will be of the discounted form (2.6).

L

(2.6) V'(n,x,P) = E Je'Bt k(XE(t))dt

K .13vi,(
+ Ef _ k i E

i=1 n

K K _3viJ,(

+ ER k ij L n

i=0 j=1 n

K
+ Ef J t 1: qo1 dUo',((t) + E qij dZiJ'(t)]

*0
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The first term in (2.6) is the holding cost. The next two are the costs for the

impulsive switching, and the last the cost of lost output via either

non-admittance of customers or forcing them out of the system before the total

required processing is completed.

The average cost per unit time problem could be handled as well, but is

somewhat more complicated. See, for example the average cost per unit time

problems in [6], [8], for other models.

We now specialize to the case of Figure 2.1. We specialize since it is

awkward to keep track of the effects of the controls in a network with general

feedback allowed, particularly of the effects of empty queues which are (at

least partly) due to the control actions. With mainly notational changes, the

case dealt here with can be extended to the general case where the only allowed

feedback in the system is from the output of a processor to its own input -

otherwise the flow is 'forward'.

Refer to Figure 2.1, and assume (A2.1). The first part of this assumption

(or restriction on the control actions) says simply that if a queue is empty, then

we won't continue to 'starve' it - but will turn on all the inputs. The

assumption seems to be quite unrestrictive, and it does simplify the bookkeeping

quite a bit

= pl2,(
A2.1. If X2 '( = 0, then all inputs to P2  are open: i.e., P1- ( =

n 2i nn

p02,f 1. If X1n  0, then the input to P1 is open (i.e., Po" - 1). If some

X i , Bi, then all inputs to Pi are closed.

For the system of Figure 2.1, and under (A2.1), we have that (2.1)-

%
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(2.5) take the forms (2.7) - (2.9). Here, p2 ' = l, since there is never a need to

shut P2  off. ((2.7) is written for easy reference; all the YiJ, uJ are still

defined by (2.1) - (2.2).)

(2.7) y12 ,C (t) ol 0 jI~2 p 1 p 1 2 i 1=(27 C n n n n INa 0)

t/Cy20.,(t)= /1: 01 120 1 r I O
n n

1
,. t/E

~~Z12'E(t) = Et Y I i2 (l P12 ) Pn I1 O

n dy (

= U 1 2E (t) - U 1 2 '6(t) - E dyl 2 ,((S)
c 

1 ,v1 2 "t
n

The y12,(.) will converge to a continuous function and V12,C . v1 2,E . 0.
n n

Thus the last term on the right of the last equation will disappear in the

limit. Define Ul,((.) - U 10(.) + U12,((.). Then

(2.8a) X 1,C(t) = Al1E(t) - DlO,((t) - D1 2 E,(t)

+ Y1o,(t) + y12,C(t) . UOlE(t)+ U1,1(t)

(2.8b) X 2 ,(t) = A 2,(t) - D20,O(t) + D1Z,(t)

+ Y20,C(t) - Y12,((t) - U°2,f(t) - u12,(

(2.9) VE(nx,P) - ER J e'tk(X'(t))dt

+vlC 2 o Oi,E
+ k1 E E e' n + 1 ko En E e'n

Ix oixn i=X n

+ k12 E 12,E

n

2
+ Ex" Jet [ E qoidUOi.( t) + q 1 2 dZ12 ,(t(01

i=1I.
A

4 .
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We now give some more definitions and state the heavy traffic

assumptions. It will sometimes be convenient to write the multiple sequence

VC v, Vi, v J,( Vi j,E as a single sequence. Let (T} denote the

sequence of event times indicated by all the elements of ve in order of

increasing time, but without respect to which events they indicate, or whether

they indicate multiple events. Define R , (ROE, R0l', R02 ,C, R12
,), where

Rct ' = 1, - I or 0 depending on whether or not the 'control' with the same

superscript was opened (turned on), closed (turned off) or left unchanged at TE.n

From (RnTn), we can recover all the control actions and their times.
n n

Let S' E = E S': 1 = e. Let E':e denote the expectation
a,n : ' d,n . an

j=1 1
given the arrival, departure and control intervals and actions which ended by

real time Si , as well as the lengths of all other arrival and service intervals

(other than o n f) which started by but which might not have been completed byn+1

time S,. Analogously, that E '  denote the expectation given the arrival,

departure and control intervals and actions which ended by real time Sd as

well as the lengths of all other arrival and service intervals (other than A' )

which started by SiC Define the conditional variances vari'C , vardfn

analogously. Define

+1 -ociE - 1, vari. ',E &E)&,n n+1 n+1 Sn n+ an+

Eif &i,( - , vari,C ai, - (C c +1)2
d,n n+1 n+l' d,n n+1

Henceforth when we say that Pi, Poi or P,1 2 resp., is open (closed) at time

n, we mean that processor i is working, the link from the exterior to Pi is

open or (resp.), the link from P1 to P2 is open for traffic.

We will use
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A2.2. There are positive numbers gai and gdi and bounded continuous functions

a'(.) and d'(-) such that

[-n~l g - + v"T ain + O(V'"),

I-n+I]-I gdi + r din + O(V'F),

where ain = ai(XE i,) and din - di (XEiE)
San d,n

Comment on (A2.2). We allow the (marginal) external inter-arrival

intervals and the service intervals to depend on the system state. The argument

XE (for example) is the proper one, since S' ,, is the (real) starting timesi,n
for the (n+]) ' t (external) inter-arrival interval to Pi (the moment of arrival to

Pi of the n+lPt customer from the outside), and XE is the system state at
si,EZn

that time. We could let the marginal mean rates a'(-) and d'(.) be

controlled. We then use ai(Xii( rEsi (), etc. Here the rg is the control over
S&,n ik,n

the mean marginal rate. There is no problem in incorporating controlled rates

into the weak convergence and approximation results of Section 5. An

appropriate associated cost would include a direct cost (higher for higher rates)

and an indirect cost due to the possible gain in production due to the higher

(input) rates. Similarly, the goa can be controlled or even state dependent,

provided only that the heavy traffic assumption (A2.4) below continues to hold.

A2.3. The set (Ice " I 1A1 , i, n < -, small E, all control actions) is

uniformly integrable.

I

W~m',
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A2.4. (Heavy traffic assumption)

S (1 -pl)gdl

IPl 2gdl + g 21]/(l-P 22) - gd2 "

(A2.4) is also what one would get from Reiman's [1] formulas for the case

of Figure 2.1. If either condition in (A2.4) is violated, then either some

buffer will always be full as c - 0 (and the cost will go to -) or else some

X' (t) - 0 as E -- 0 (and the cost will go to -). With little extra trouble

it is possible to control the pj also - but this seems to be of not much

interest for the case of Figure 2.1. The results for our case can readily be

extended to the case of 'feedforward' systems, where the only allowed feedback

in the routing is from a processor to itself. For these general cases, it might

be worth controlling (marginally) the pij. The extension is simple, and follows

the same lines as would the extension to marginally controlled rates.

A2.5. The routing variables ({i0,,ij,k) are mutually independent and independent

of the (and P(Ij,- f)- w .

A2.6. There are continuous functions oa(), di() such that

d,n+l m o,i(X i, ) + E

d,.+1 d,i(Xi, +  6+ .Sd,n

where S . 0, uniformly in all other variables.

Comment on (A2.5) and (A2.6). We allow the conditional variance to

"U
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depend on the state here, just to show the possibilities. Controlled variances

can also be handled. In many applications (and in most past works on the

heavy traffic model) the oa, are just constants. The independence in (A2.5)

can also be weakened, and the sequence of interarrival times or service intervals

can be correlated (in ways other than via the 'state' dependence used here). This

would involve a more complex method for obtaining the weak convergence. The

perturbed test function methods of [5] (see also [6]) are quite suitable for that

task, and would require only moderate changes in the proof of Theorem 5.1, but

the additional notational, etc, burden seems hardly worth it now.

A Nl: \.% K \-.NV ;1
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3. A Convenient Representation for Xt(-).

In this section, we center and rewrite the terms of ( 8), so as to facilitate

the weak convergence analysis in Section 5. We will do three things. First,

the A and D processes will be centered, the centering terms simplified, and the

centered processes written as a rescaling of simpler processes. This is similar

to the procedure of [1]. Then we will represent the Y'j," and Ulj,6  in

terms of simpler processes i,. and -UIE (not depending on j) plus a term

which will go to zero as c -0 . Finally, we will represent Y'.E and Xi,6

as continuous (and unique) functions of the 'other' data, similar to the

representation used in [1].

Centering of the Arrival and Departure Processes. Now, several processes

will be defined. Define S', (t) (and analogously SiE(t)) to be the inverse of

the interpolated arrival time function cSd,/ in the sense that

i'm(t) = max (c k: E i,. )

Define the centered processes

t/ E Sa,k+l'1

AO (t) r : [V1t/
k=1 I=Sj,c R

t/E
=- £ (1 - " )

1

(3.1)

Do(i 51E 1

k=l -d,k k

k=1 dk k

z4 V N %"-
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The second equality in the first definition follows from the fact that i

= 1 only at the left endpoint in the intervalrand the length of

the interval is crk'  (and similarly for the second definition).

Owing to the independence assumptions in (A2.5), we can (and will,

henceforth) replace the IIJ by IVi. We can write A"E(.) in the form (which
Sd~k

defines AI'E(.) and idE(

iE Si'E (0 1
(3.2) Ai.E(t) V

Ek=l I Si e
%- ,k

E k=1

Ai, (SiE (t)) + B, (t) =- p (t) + Bi (t).

Doing the same thing for the DiJ'i(.), we have (which defines Dij,(.) and

(3.3) DiJ"e(t) = qJ,((SIE(t)) + BE (t) j E (t) + B'()

where

(3.4) BdJ'(t) = (r t) Pij.
SE k= a k

For purposes of calculation below, write

D t O .E(t) + D 2I (t) -
b I (

0 P11 :-

We now cancel the 'principal parts' of the B'c , terms. By taking the

terms in the order in which they would appear in the centering of the first

three terms of(2.8a) and using the expansion in (A2.2), we write

I
J
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BEt)- (1OE(t) + 12E(t)) -

(t) +0

(3.5) r + vr aik + o(Vr)]
Ek=l

ii.(t)

- V [g , + vr dik + O(V)](1 -P1
Ek=1

' '(t)

Since E ak f t/E (mod. 0(1)), the principal term of the first sum is
Ek=l

g 1t/E (mod O(vr)), and of the second in gdtt/cr (mod 0(vr-)). These cancel by

(A2.4). By using the definitions of al and alk and the fact that X

changes by at most O(E) per step, we can write the sum of the middle terms

in the first sum of (3.5) as

t/E
E E a1(Xk) + (term which - 0 as E - 0)

1

and similarly for the analogous terms in the second sum.

With the above cancellations and the last representation, we can rewrite

(3.5) as (3.6) (where 6'(.) " 0, uniformly on bounded intervals). Equation

(3.6) defines BlE(-) and b(-).

(3.6) E E [aI(Xk)- (1 - pIl)d(Xk)] + 6(t)
IIt

5 f bl(Xf(s))ds + 61(t) = BI'E(t) + 61(t).

Repeating the procedure for the 'biases' arising from (2.8b), we get (which

defines B ,(.) and bl(-))

V IV1
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(3.7) B' ,(t) -B
20 ,( (t) + j12,C(t)

(tE + 6"(t) bf s)s2 + 62(t)

E/ [ [ 2(xk -( p2 )d 2(Xk) + ld'(Xk)] + r02(t)

. Jt b2(X((s))ds + 62 (t) - B 2,1(t) + r:.(t).
0

A Representation for Uij,",Yij,£. Define the processes (with P 2,E
n

(3.8) Y Mt = V.Ij Pn 0)
1

We can also write

yl 2 ,E(t) u 12,CrdY£()(3.9a)n=1 f .t;12,~ d £ s
n

12(
"12£v +1

;-1C (t) - l2dYl(s) *Cn=0 P2 -12, E
n

ylj2 (E() - p 1 2yl 1 "(.) * 0

y20,l(_) -U ( .P( -P22) y2(( = 0, ,

U 12 ,ft M 'rP 1 2  dYq,E( -Ps
1 ) 40

v

(U12, ( .) -_ 1 ~ )

~~~n n -'0ah~ n

I0
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In order to prepare for the utilization of these convergences and simplifications.

rewrite (2.8) and (2.9) as follows, where the pi,-(.) and p1. are 'small error'

processes and the Wi'(.) are defined to be the sum of the first three terms

in the middle part of (3.10a) and (3.10b), resp.

X1,E(t) A ,(t) - (00,E(t) + D12,(t)) + Bl,((t)

(3.1Oa) + (Y1°M (t) + Y1 2'E(t)) - U0 1 '(t) + U.E(t) + plE(t)

= Wl,(t) + B'-,(t) + (l-p 11)Y1-(t)
Uol,f(t) + U1,E(t)+ ^1,E(t)

(3.1 Ob) X1'E(t) = A?'(t) - 0,1(t) + [.12(t) + B' 6(t)

+ Y 20 ,(t) . Y12,(t) - u 0 2,(t) . U2,E(t) + p2,E(t)

= W'.) 2 ,(t) + B2 .((t) + ( -p 22 )Y 2. (t) - p 2YlE (t)

- U0 2 'E(t) - r 2, (t) + p2,E(t)

(3.11) V((7,x) = [eqn (2.9) with Zl2,(.) replaced by U12 ,6(.) - U12 ,(.)
A

and an 'error' term ps.(.) added].

It will turn out (Section 5) that, for any sequence of controls n E  with

sup VC(Tl7,x) < * sup 1p'.(t)1  - 0 in distribution for any T < *, and&(T

similarly for the p' E(.)

Owing to the impulsive nature of the 'control' part of the cost (2.9), on

any bounded time interval there are only a finite number (w.p.1) of subintervals

on which the controls are active (i.e., where some Pi or Pij is shut off). By

the definitions, the reflection terms yii.i(.) cannot increase on these 'control

intervals'. In particular, YlE(.) (and yli,E(.)) can only increase wh -T

P0 1  and P1  are on (recall that P01  is on when X1 0). Also, Y2 ,E(.) kanJ

-- 6 %
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y20,E(.)) can increase only when all of P1, P 12 and P0 2 are on (by (A2.I), if

Xn 'E = 0, then all inputs must be turned on). Because of this, the setup of [I,

Lemma 1] can be used to obtain the 'reflection' terms as continuous functions

of the other 'non-control' data, simply by using the representation of [1] on the

appropriate 'non-control' time segments, and we now formalize this.

Let J1,f = [ui.Ein') denote the sequence of successive intervals (of

interpolated time) such that P" - PO-'" - I for ,k E J',", and let J2'" =
It k nn

[n' denote the successive intervals such that pIE = p121E = p02,E =
n n k k - k -

for Ek E j2E• The Yi-() can increase only on the J •

We can use the representation for the yij,' of [11 in the pieces between

the control intervals. For any function f(-) define f i,n( ) = f((' ,E + )f-

in'I)) - f(in'I). By [1, Lemma 1], there is a unique continuous function

F(.) (F 1(. ),F 2(.)) (the continuity in the arguments which are functions is

taken to be continuity in the topology of uniform convergence on bounded time

intervals) such that

(3.12) ylO, + y12,E = Fi(XE(IlE), ME ), Bl,f(.) pIa,(.))

1,n 1, =,n ,

y20,E = F 2(X 2 'E(u2,E), W 2
f ( .), B2 (.), Y10-6(.) + y2,n (. ), p2 ,n(.))

2nn 2,n n 2,n 2 2,n

Furthermore F(-) is 'non-anticipative', the corresponding xi'(.) is

non-negative and the (resp,) left hand sides of (3.12) can increase only at those

times when the (resp.) X',(.) are zero.

Alternatively, there is a unique continuous function F(.) such that

(3.13) (ylO,( .) + Y12,(.), y20,(.)) =

F(W *(-), BE(.), pf(.), Xf, Xa'E(tL'), Mi.L-' i = 1,2, n <

e- J^ F
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where F(.) has the properties ascribed to F() above. In particular, thc

value of the left side of (3.13) at time t depends only on the arguments of

the functions in F at times 4 t and on the gi , with values less

than or equal to t. Owing to (3.13), we will not need to concern ourselves

with the weak convergence of the arguments of the yij,t(.). This will follow

from the weak convergence of the arguments of F(.).

A Tentative Form for the Limit Control Problem. Purely formally, let the

arguments of F(-) converge to W(.), B(.), ut, ;i', (p(.) = 0) and let Yi(.)

be the limit of Y',(.). Then, on each bounded time interval the complement

of{[. ni ),n < -) will just be a finite set of points, and the controls will be

impulses acting at these points. Using this assumed convergence and (3.9b) we

will have

(3.14) X'(t) = X'(0) + W1(t) + B1 (t) + (I - pl 1)Yk(t) - U°1(t) + U1(t)

X2(t) = X2(0) + W2(t) + B2(t) + (1 - p 22 )Y 2(t) - p12Y(t)

U02(t) _ U 2 (t).

The yl 2(.) can be obtained from the limit. Y1(.) via (3.9). The limits

(1 - p11)Y1 (-) = lim(YlOE( .) + y 1 2'( .)) and (1 - p22 )Y
2 (.) = lim y2 O,(.) are

to be obtained from the limit of (3.13). Furthermore, (as in [1]) the (l-pii)Y(-)

obtained from the limits in (1.13) are the unique continuous functions which

can increase only when X'(t) is zero and which guarantee that X'(t) ; 0.

The U1 2(.) can be used to define U12(.) via limits in (3.9). We will

have U12(.) = p12 U( .)/(l.p).

%,

W
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4. Description of the Limit Control Problem

In this section, we define the proper limit control problem for the system

of Figure 2.1. First, it will be convenient to picture the effects of various

control actions on the XC(.) for small c. We do this in some detail, since

the limit problem is somewhat non-standard, partly owing to the possibility of

'multiple simultaneous impulses'. Also, the set of admissible impulses and

associated costs are defined via the possible limits of the controlled XE(

associated with bounded costs.

Given the limit controlled reflected diffusion X(.), we will need to

determine an optimal or 6-optimal policy for it. In order for the 'limit'

problem to make sense, for any admissible policy 7 for the limit X( -), there

must be a sequence IT( of policies which can be applied to the XE(.) (i.e.,

PiPi on/off or rate controls) and such that, under fl(, X((.) converges to

X(.) (with policy n), and the associated costs also converge. Because of this,

the limit control problem must be defined in terms of limits of what is possible

for the XE(-). This yields a rather interesting limit control problem.

Controls for the Limit Problem. Refer to Figure 4.1, where some typical

paths are constructed, under the heavy traffic conditions. Start at point (a)

with all Pi, Pij on except that Pol is off. The path moves to the left and

as E - 0, it converges to the horizontal line (a,b). The mean (interpolated)

movement to the left in time A is g~iA/v'r + 0(&). Hence in the limit, as

c 0, there is an impulsive change.

Now, restart at (d) with only P 12  off. The path drops, and as 0

it tends to the vertical line (d,e). In time A, the mean drop is

pr.

VO
l

U*L - -
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P1 2gdA/vr + 0(A). The same path is followed if only P0 2  is off or if P1

and Po are both off, although the 'drop' speed will be different. Now,

restart at (e) with only P1  off. The path moves toward (f) (for small c),

and the limit slope can be calculated from

net mean flow into P2  g. 2 - (l-p2 2 )gd 2  = .
(4.1) =

net mean flow into P1  gal ga1

If the path reaches (f), then Pol must be turned off. If, at (g), we turn P1

back on (but leave Po1  off), then the path moves toward (h). The effects of

both P1  and P1 2  being off simultaneously are the same as for Pi being

off alone. Over small intervals of length A, the A, D and Y terms in

(3.10) contribute very little to the paths (compared to the effects of the control

actions), since they converge weakly to continuous functions.

Now refer to (i), and let only POl and P0 2  be off. Then the path

moves to (j) with a limit slope calculated as in (4.1) and yielding the slope

(4.2) 1(' - p 2 2 )gd 2 - Pl 2 gdl]/(l - P11gdl

Similarly, if only Po and P1 2  are off at (i), then the path moves toward (j)

with a limit slope

(4.3) [(' - P22)gd 2 - g, 21/(l - Pldgdl

All finite sequences of arbitrary lengths of the impulses described in

connection with Figure 4.1 are possible. Suppose (e) - (f) - (g) - (h). Then

as c -" 0, it would appear that the limit X(.) jumps from (e) to (h) directly.

But this (e) (h) impulse must be realized as a concatenation of the basic

% %
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impulses described above. In general the limit control is specified by a

sequence of off/on actions for the Pi, Pip in a specified order, and with the

impulsive distance travelled between successive ('simultaneous') control actions

specified. The cost paid for the impulses is precisely the impulsive costs

defined by (2.9). The described limitation on the ways in which the impulses

for X(-) can be created is important, if the control problem for the limit

X(-) is to be properly related to that for XE(.). In Section 6, we show that

the problem can be quite tractable from a numerical point of view.

The instantaneous changes in the Ua(.) can be readily read off from

the limit sequences of simultaneous impulses. For illustration, we do it for the

(e,f,g,h) sequence of Figure 4.1. Let ei, etc. denote the ith coordinate of the

point (e), and let 5U" denote the increment in U0 . On (e,f), BU' 0 + 6U =

f- e1, U = e" f 2. On (f,g), 6U0  = BU10 + 1 , and the value is

unimportant, since their effects cancel in (2.8a). Also, SU12 = f- g On

(g,h), UO' = g, - hl. All non-specified SUa are zero. The 6U1 i  always

occur as (6U1 0 + 6U 12 ).

The Limit Dynamical System. The Wiener Process. The limit system will

be (3.14). It will turn out that the limit W'(.) can be decomposed as

follows (using the limits of the three terms in (3.10) which are used to define

the Wi'())

W(= A(.) + W'(.), W'(.) = -0(.) - 512()

W 2(.) ,() + w2(.), W2(.) -BO(- .) + 2(.).

Here, all the terms are continuous martingales, with A1(.), A 2(.), f)20(.) and

(D 0(.),D1 2(.)) being mutually orthogonal. The quadratic variation of A'(.)

I

,)

noi dv
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is og o (X(s))ds and that of Wd(.) _ (Wl(-), W2(_)) is E(t)

where

E1 1(t) - gd1[P11(1 -pt + g l(1 P 2) ~1(X(s))ds]
0

(4.4) t
E12(t) - -gIP1 2(I " P11 ) f or(X(s))ds " P1 2 P1 1 gd1 t

3 t

E2 2(t) = gd 2[P20(I " P20)t + P20gd2 JO2(
0

+ gdl[P 1 2(l - p12)t + Pl 2 gd21 J (X(s))ds] •

0

If the ori and oai are constants, then the covariance is precisely that

obtained by Reiman [1] (with a different notation used there).

It is evident from (4.4) and the cited orthogonality properties that there

are mutually independent Wiener processes wi(.), w (.), w20(.), {w11(.), w2(.)),

where each scalar valued process is standard, and with respect to which X(.)

is non-anticipative and Ew~l(t)W1 2(t) -[P 1 1P12 /(l-p 11 ) (1-p1 2 )] t and

A'(t) = g (2s/ O (X(s))dw (s)tI
MOS/ g f(XO s))dwdw(s)

Wd(t) [gdlP 11(l p1 1)w1(t) + ( P dl Jd(X())dwd
0

(4.5) Wd(t) = [gdsP 2 o(l p~o)] w O(t) + [dl2(l -P20 w (t) +
'4wd +lgdP12l -P 12)O (t)Jt

+ ,209g 2 d2(X(s))dw2(s)

p 3/g2 J Odl(X(s))dWI (s ).
P Pl29dl Jo W

The terms involving wj(-) are due to the variations in the routing,

%S
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whereas the terms involving w2(.) are due to variations in the service times.

The drift terms B'(.) in (3.14) came from (3.6) and (3.7) and are

B1(t) = [al(X(s)) - (I - p,,)dt (X(s))]ds
fo

B2 (t) = - (1 - p22 )d 2(X(s)) + P 12 d'(X(s))] ds.

Then the limit problem is defined by (3.14).

Admissible Control Actions. The Ua and Ua in (3.14) are

non-decreasing piecewise constant functions which have only a finite number of

jumps on each finite interval, and they can be taken to be right continuous.

They thus correspond to 'impulsive' controls. We first identify the allowed

control impulses in the limit model (3.14) with those described above for the

discrete model (2.8). The allowed impulsive effects of Ui in (3.14) are those

described for U1' in (2.8), as c -, 0. Also the impulsive effects of U12  are

the limits of those of U12,( and the effects of the U0 i are those of the

Uoi '  as c - 0. This completely characterizes the possibilities for the impulse

control of (3.14). Generally, several components of the controls might jump

simultaneously, or a single jump in one component might be a consequence of a

multiple simultaneous off/on sequence. We must allow these possibilites and

distinguish an order for the 'simultaneity', as discussed above, not only because

they are possible control actions, but because they are possible limits of control

actions for the physical processes. Thus, we count the parts of the multiple

simultaneous impulses as distinct impulses. We now develop the notation for

keeping track of the necessary information. Recall the definitions of r and

R' given below (2.9).

Let Tn denote the sequence of event times. The Tn are not necessarily
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distinct, but "n+1  Tn  and the subscript n denotes the correct ordering,

'simultaneous' or not. At each event time one or more of Pi or Pij might

shut off or on. What happens is indicated by the vector R n =

R R ° R where RiJ - 1, -1 or 0 (resp., Rl) according to whether or

not Pij (resp., P1) is turned on, off or not changed at Tn. Associated with

(TR n) is 6U = (= UnU 6Un,1 6Uen), the instantaneous (at T ) change in the

controls U(.) To illustrate the procedure refer to the path (e,f,g,h) in Figure

4.1. There are four event times, T", associated with (e) T2  with (f), etc. Also

T"I- T 2= Ts = T . At 19 RI - 1. At T2 , Rol = 1. At Ts, Rl = -1 and at

T4, Ro1 = -1. All non listed Ra are zero. The associated impulses >Un  are

given in the discussion below (4.3).

The {6Un,Tn,Rn) is said to be a control policy. The policy is said to

be admissible if the function

(4.7) (t) = (X o, B1 4iT nl t), T nl{7n4t , RnIr n(tJ, I{Tn) , n < , X(t), Y (t))

is non-anticipative with respect to the Wiener processes wg(.). An equivalent

definition of admissibility is if the A', D'J(-) are martingales with respect to

the filtration generated by ($(t), A'(.), D'iJ(.)), with the quadratic variation

defined in and above (4.4).

Given W(.), B(-), U(.), there are unique processes X(.) and Y(.) such

that Yi(.) increases only when Xi(t) - 0, and where Xi(t) 0 and (3.14)

holds, as in [1] (see the end of Section 3). Of course, here B(.) and w(.)

might depend on X(-), so it is not known a-priori that (4.6) has a unique

solution. If the Oaiodi'b i do not depend on x, then the situation (without

controls) is like that in (1] and we do have uniqueness of the solution to (3.14)

I e 1V
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for each admissible contre' policy. The Y(.) in (3.14) is obtained from (5.1)

below, which is in turn obtained by taking limits in (3.13). In (5.1), (j4d) is

the subset of (rn) at which or both P1  and Pol are on, with at least one

turned off at Tn- 1, and {tL2) is the subset of times at which all of P1,P12

and P0 2 are on, with at least one being off at rn -

For an admissible policy, the cost function (the limit of (2.9)) is

V(n,x,P) = En f e-tk(X(t))dt + k E e
0 n

2 E 3 e-v3 1

(4.8) + E koi x + k 12

1 n n

+ E Je -  dU 0 i(t) + q12d[U (t) - t)]

In (4.8), the vnJ, vn are defined as the moments of shutting off/on the

indicated links or processors, as in Section 2.
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5. Weak Convergence

We will use

A5.1. The uncontrolled X(.) has a unique solution (in the weak sense) for each

initial condition.

Note that (A5.1) implies weak uniqueness of the solution X(.) for any

admissible control policy.

Theorem 5.1. Assume (A2.1) to (A2.6) and (A5.1), and let sup VE(l76,X6) <

for 77' = {Rn,r,U',n < -) admissible. Then
.(. , I (( . , o1 ,f(.), - 12,,(.)), 2,,(.)

is tight in D5[0,-) (Skorohod topology) and the limits of any weakly convergent

subsequence of the four sets (we pair B'o and B
1 2 ) are orthogonal continuous

martingales. On each [0,tj . the mean number of control actions is finite, and the

set of intervals on which some control is active converges to a finite set of points.

The pieces(+) of X((.) on the intervals where no controls are active are tight, and

the weak limits of these 'pieces' are continuous. The convergences (3.9b) all hold.

Let C index a weakly convergent subsequence of RE =

{X(,Ai (.),Di E(.),B((-),Rn,Tn ,Un,i,ij,n) with limit denoted by R . Define the

process W ) from the limit processes by

R(t) - (X 0 ,Ai(t),D'j(t),B(t),ij, (RnTn,$Un)I(T n n < *n).

(+)More precisely, define the 'pieces' by shifting the start of the intervals to the origin, and

continuing the 'piece' to the right of the interval by setting its value there to be equal to the value

at the right end point of the interval.

.0

I
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Then A'(.) and Bij(.) are martingales on the filtration engendered by the R(t),

with the quadratic variations given in and above (4.4). The limit policy

ni = (Rn.Tn.BUn) is admissible for X(-). Except at points where there is control

action. (3.14) holds, where yi(.) is defined by (5.1). (See (3.13)). We define

(w.l.o.g.) X(t) by (3.14) even at points of control action.

((1 - pl)Y(.),(l - p 22)Y 2(.)) =

(5.1)
tF(W(. ),B(. ),0,Xo, Xi(01in),; i i =12 n~o

In (5.1) g, is the limit of both ;" and "' ' and Xl(u.' ) is the limit of
n n n n

the values of X',(;() (the p(in) are obtainable from the (T,Rn)). The Yi(.)

increase only when X'(t) = 0 . The limits of the uncontrolled sections of XE(.)

do not depend on the the subsequence, except for their initial conditions.

Proof. (a) First, we show the convergences (3.9b). We do it for UlO°'(.) =

UIo,() - p1 oU1.E( .)/( I - p11 ) only, for the rest are treated in the same way.

We have that

S10C (t) = /C (1[ 0p12- I 2 P0 I O] (l-p1)
I (Pio + P12 )  n n

t/f
is a martingale and its variance is bounded by O(e) E 1 (I-P') C'(t) . It

1

is easily seen that

-_ tIE
lim yr E (l-P ) <

E1

for otherwise the buffer of P1  will fill up (one or more times), forcing the

POI to shut off (one or more times) such that EUO'-(t) will diverge and the

costs will go to infinity as c 0. Thus, C((t) 0 as c -0, which yields

the desired result.

PS,

V N N N ,V N N ON
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By (3.9b), the piE(.) and pi,f(.) of (3.10), (3.11) go to zero.

Below, the tightness of (WE( .) will be shown, together with the fact

that its limits are continuous. This and the representation (3.13) implies that

(for any weakly convergent subsequence) the yiE(.) converge (in the Skorohod

topology) to continuous processes Yi(.) . Thus, via (3.9), we have

yt2(.)c = Pl Y ( )

(b). We have ES' C and SI ((t) converging weakly to the processesa~t /C C

(si() and S',(-), resp.)with values t/gc6 and gait , resp. This is more or
t/E

less obvious since (e.g.) - has orthogonal increments and its

variance tends to zero as E - 0 . The increments of each Ao,(.) and

0) '( -) are also orthogonal. Due to the uniform integrability in (A2.3), those

processes are tight and all weak limits are continuous martingales.

The four elements of (Dio and D12 are paired)

(A~o(), Ao'(), (Do Doo j) o()), Do0°"()) are mutually orthogonal, and so

are the weak limits. To see the mutual orthogonality, one uses a calculation

of which the following is typical. Take a 'typical' term from A,.( -) and

D E( .) and use the definition of E' E above (A2.2) and the centering in

(3.1) to get (drop the e for simplicity)

.~kI &,n /-in/
E +I Eil I- I/l]l - E, ~(i -~~k'k•~ ~ E ['- i it ,( E-(l "i Ai

E [ - Zn/ '1 , q i,( .Csi,( d,k-I x  k " i k/  k)
&~,n-lI 'd,k-l /

0 .

Using the results in the first part of (b) above, and the definitions of

,'(.) and DiiE(.), all weak limits of A"E(.), A2,E(.), (D O,(.),DI2,(.

D2o,,(. are continuous martingales. All the assertions of the theorem
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(except for the non-anticipativity assertion and the quadratic variation values)

follow from the results in part (a) and (b) above.

(c) Owing to the mutual orthogonality of the four processes Ai (.), etc.,

and to (A2.3), we can calculate (for the limit process) the quadratic variation

and prove the martingale property with respect to the o-algebra engendered by

() separately for each component. We do it only for (Dio,(),D12,6()). Let

% index a weakly convergent subsequence of V and define 5(.) as in the

theorem statement. Let f(.) be a smooth function with compact support and

h(.) a bounded and continuous function, both real valued. Let t,t+s and

twit below be points such that the probability

P(/n equals t or t + s or ti) = 0

,. for each n,k . Define 644nj'6 = Ii'c " ii n /ki.E

By the uniform integrability (A2.3), the representation of D'iJ(.) as a

sum, and a truncated Taylor series expansion, we can write (we can assume

w.l.o.g. that T(( t for only finitely many n)

(5.2) Eh ( AX (tDAi,(tk), DIJ(tk) BE(tk),(RITn, SU) I , k,n).

WNI 1 B"(tk , n {T'(t 0}

[ f(D10o, (t+s),D 2 ,t _ f (' o, (t), t2 )D ( s)D (t+s)) ()

Sd (t+S) i n- i r n'

or=0,2 -1, 1
cn=Sd (t)

-1,(E-- I , S l 0 , n I 1

2 cB=0,2 - ,e 1i ° •12]

En=Sd (t)

-0

- ~~'V '%V-

-"* 0 .
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Now, use the definition of El given above (A2.2), the centering of t 'j,

and the assumption (A2.6) on the conditional variances to replace SBl a in then

first sum in (5.2) by zero and the W'p6113 in the second by ElE ,
-n n d,n-1 'n 'n"

This latter quantity is

E E [Ila i P L1 isd1 I - Pi _"

k

= Pla - PlaPiB + Pipjj3 var k/k

(5.3)
2 2

= pl a6 L3 - pipiB3 + PiaP1i gdlodo (Xsl,)d,k-1

+ (negligible terms).

The limit (as E - 0) of the double sum in (5.2) is

Sd(t+S)

f-(2 f Dl 7(T)),.CS(T)dT

a,8=0,2 I x'

where E~x 0 2 2)2

0()= PO - PlO + r1Ogd1OdiX(t/gd )

2 2o2(0= .PoP12 + PloPl 2gdlOd1X(t/gd )

E2(t)= P20 " + P2 P od X(t/g)) ,

where we used (5.3) and the act that 6 - t/gd to get the proper limit

of the argument of c2

dl(
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Now, recalling that Sd(t) = gdit , and taking limits in (5.2) yields

i Eh(X(ti,),Aki(tk),DiJ(ti,},Bi(tk),(Rn ,T,,BU,)lIrn (tk), n,k}).

#n
0(t+s) (t+s)) - f(blO ( t))

(5.4)

(t+S)gdi

2(D( (r)') 2 (T)) EB(r)dr 0

2 Xx,0o2

'tgdi

The arbitrariness of h(.) , f() , and t , t+s , (ti) (possibly excluding a

countable set) imply that (D1 °( .)D 1 2 (.)) is a martingale with respect to the

asserted filtration.

The quadratic variation can be obtained from (5.4) via a change of

variables and is ft E(T)dT , where E(.) = {Eoe(.),c = 0,2) and

Eo2(t) = gdl[.p 10 p12 + pOP1 2gd210dX(t ))j

.5

E22 (t) = gd 1[P20  P + p2o0 2 (X(t)

With analogous calculations for DoE(.) and for the Ai,(.) , we get

quadratic variation for the Wc( .),A'(.), D'i( .),as given in Section 4.

By the above argument the limit policy (Tn,R, 6U.) is 'non-anticipative'

with respect to the martingales, or their generating Wiener processes wg.).

Owing to the way they were obtained as limits of the (T ( , -  ,}' the limit

policy (Tn,Rn,6Un) is admissible in the sense that it corresponds to admissible

I
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sequences of impulses corresponding to the sequence of off/on controls as

discussed in Section 4.

By the above argument, the limit policy (TnRn,6Un) is 'non-anticipative'

with respect to the martingales or their generating Wiener processes.
Q.E.D.

Extension. Consider the graph of X'(.) (X','(.) plotted vs. X2.6(.)) in

the state space during a fixed control action. It can be shown that the graph

converges uniformly (in probability) to the limit straight lines given by Figure

4.1, or the considerations leading to it in other cases. The convergence is in

the sense that the maximum value of the distance between any point on (this

part of) the graph of X6(-) and the' closest point on the limit straight line

goes to zero in probability.

Theorem 5.2. Assume (A2.1) to (A2.6) and (A5.1). and let e index a weakly

convergent subsequence with limit R(.) . Then (with 77 defined as in Theorem

5.1) for any P

(5.5) Jim V, (n ,x,P) ) V(In,x,P). i

Define N'.E(t) to be the number of actions of the control P. on the interval

[Ot] . if

(5.6) (Na'E(n+l) - Na'-(n) , a , n < }

is uniformly integrable, then

(5.7) VE(lTE,x,P) - V(Rx,P).

%p

S,,

'.,'. ' '.)' - .', .)', ',-, ,- , .'-' , p ?'-' ' % % '- V- -V ,-..' . %." V. % ' . "-.. ' ," *. . . .-•-,.-'..',. . '''
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Proof. The relation (5.5) is just a consequence of Fatous' Lemma and the

weak convergence. Now, let the uniform integrability hold. Then, certainly the

holding costs and the impulsive control costs in (2.9) converge to their limits, as

given by the terms in (4.8). We need only work with the last integral in (2.9).

The arguments for each component are essentially the same, and we work with

the U01'( • ) term only assuming that Pi is on. If P1  might also be off

part of the time, the argument is a little more involved (involving the X 2 't as

well as the X1-), but is essentially the same.

When Pol is off, the increments in the Yij.t(.) are zero. [If X1 6 (t)

= 0, we must have P01 on, by (A2.1)]. We can write

U01'E(t) = E [UO, .0 (Vlt) - UlE(v 01 .E)]

Mn

(WJ,((lOE(( t) - Wl,((v 01( J
n

SE [X1 ,(; 1'(rt) - XlE(vOI,(t)] + [1B1Bl(0."ft) - Bt
n n

+ (terms which - 0 as c - 0).

For some K1 < ,, the last two sums on the right are bounded by K 1NOI'(t),

which is uniformly integrable by hypothesis. By the orthogonality properties of

the summands in the expression for the Wl't(.) , the mean square value of the

middle term is O(t+]) . This yields the uniform integrability of (Uo°E(t)) for

each t and of (UOl'(n+l) - U°.'E(n), c > 0, n < ,). By the weak

convergence and the uniform integrability of these and the other terms in the

last integral of (2.9), the assertion (5.7) follows.

Q.E.D.
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It is not a priori obvious that there is a control policy for which (5.6) is
uniformly integrable, since we must shut off the inputs to Pi whenever its

buffer is full. We will define a standard 'comparison' control policy called the

Ao-boundary policy. It will be useful since its properties imply that we can

always assume the uniform integrability of (5.6) for the optimal or 6-optimal

policies for the X'(.) . Let Ao E (,min(B 1 ,B2)/4) and refer to Figure 5.1. If

X 2,( = B 2 then shut off all inputs to P2  until X2 ,'  reaches B2 - A0. Then

turn them back on. If at the end of that time B1 - AO < XlE" < B1 , shut Po1

off until X1,( = - Ao . If Xl ',( B 1 , then shut P01  off until x1"E

reaches Bi - • Then turn Po1  back on. We use the analogous definition

for the Ao-boundary policy for X(.) . Then, if ever X((-) or X(.) hits

the outer boundary, we control it to a distance at least AO  (in each

coordinate) from the outer boundary.

Theorem 5.3. Assume (A2.2) to (A2.6). Then for the A-boundary control and each

k <c

(5.8) sup EjNO (n+l) - Na'O(n)I < all c,
E small

and similarly for the 'jump numbers' of the limit process X(.)

Remark on the proof. Refer to Figure 5.1. Let t( denote the ith time of

return of X () to the outer boundary after the i t h time that the control

takes the process to the set [0,(B, - 60)] x [0,(B 2 - A)]. One can readily show
itthat for any o e (0,1) , there is T0 > 0 such that ii

,P
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(5.9) sup P(t+- t < To I data up to t6)1- 60 .

wi,

@mall E

This is just a consequence of the properties of WE(.) , BE(.) and of the fact

that dUa'E(.) = 0 on the intervals of interest. With (5.9), it is not hard to

show that all the moments of N'-E(iTo+To) - Na,(iTo) are bounded, uniformly

in i and c and in the initial condition. (Similarly, for the X(.) process.)

This yields the desired result. See the proof of Theorem 5.3 in (7] of a related

result for a problem with a more complicated statistical structure.

The optimality and 'almost' optimality theorem. At the present time

almost nothing is known about optimal or -optimal (6>0) policies for the

X6(.) .This is one of the basic reasons for considering suitably adapted

policies which are 'good' for X(.) . Unfortunately, we know little about the

optimal or 6-optimal policies for X(.) . Thus, we must postulate (in (A5.2))

the existence of a 6-optimal policy with certain smoothness properties. The

assumption appears to be eminently reasonable, since there is usually enormous

flexibility in the smoothing that can be put on 6-optimal controls. The

numerical results obtained via the methods described in Section 6 satisfy (A5.2)

for all the cases tried, in the sense that the 'control decision' surfaces

(discretized for the numerical calculation) seem to have the required properties.

In fact, the situation in Figure 5.1 is more or less typical, in the sense that

some continuous deformation of these decision surfaces is usually the case.

For our current purposes, it is best to view the path X(-) as its graph

in the state space. The uncontrolled sections are the graphs of the paths of the

uncontrolled reflected diffusion, and the controlled sections are straight lines,

each one (or perhaps part of one) correspond to a different value of the set of

, ., .% .,%t '.'..%. .; .- o..' '.... - ... . . ,: .,, L\.. ' ; - . , - . - . .%
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indicators P = (PO1,PO,P 1,P1 ). In a sense, (A5.2) is a long-winded and formal

way of saying that the lengths of the straight line segments are piecewise

continuous in their starting point. It also deals with the possibility that the

initial P might be inappropriate for the initial state x, and that we might

have to change the control settings instantaneously at t = 0. We tried to give

a general description of what reasonably seems to be expected. The situation

might be simpler in special cases - but it seems likely that the useful S-optimal

(or even optimal) control policies would be described by (A5.2), due to the

nature of the impulse sequences. Note that (the ka are the cost coefficients

in (2.6))

I + sup [V(x,P) + I]/min k. s K
x,P

is an upper bound for the numer of 'simultaneous impulses' (the above number

of sequential line segments) for the 6-optimal controls, with B 1. We know

that sup V(x,P) < -, owing to the properties of the comparison Ao-boundary
x,P

control of Figure 5.1.

We require some 'smoothness' in the 6-optimal 'feedback' controls, since we

need to adapt them for use with the X6(.) process and will require that the

corresponding sequence (X (.)) (and the associated costs) converge

appropriately to X(.) (and its associated cost).

The boundaries of the sets G(l) and Gi(P) below are smooth in that

they are composed of a finite number of differentiable curves which are not

tangent at the points of intersection. We use P to denote the control value

just before a decision to change the control is made, and P1  to denote the

new control value just after the decision is made. Recall that P I 1 is used

for P = (1,1,1,1).

.W1
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We could replace (A5.2) by the simpler assumption that for each 6 > 0

there is a 6-optimal admissible policy nt6  for X(-) and admissible policies

nc for X(.) such that Xc(.) (under n) * X(.) (under 7r) and the

associated costs converge. (A5.2) simply defines a reasonable n: for which

this can be done. The interiors of all sets in (A5.2) are relative to G = [0,B1 ]

x [0,B 21.

A5.2. For each 6 > 0, there is a 'feedback' polic, 716 for X(-) which is

6-optimal in the sense that it satisfies (A2.1) and

(5.10) V(x,P) = inf V(n,x,P) o V(n 6 x,P) - 6
1ladm.

for all x,P and which has the following properties.

(a) Let P =1. Then there is a decision set G(l), whose boundary is divided

into a finite number of segments. Each segment is associated with a switch to

some P1 0 1 when X(.) hits it from the outside. The segment

associated with each P1 is strictly interior to one of the sets Gi(P1 ) below.

(b) For each P 0 1, there are a finite number (perhaps zero - see remark in

(c) below) of sets Gi(P) whose interiors are disjoint. If x E Gi(P) and

P is used, then it is used until the boundary of Gi(P) is reached. The

distance (taken by the graph of X(.), which is a straight line) from

x E Gi(P) to the boundary of Gi(P) is a continuous function of x. The

(straight line) graph is (uniformly) not tangent to the boundary at any point

of contact. The boundary is divided into a finite number of segments. each

associated with a new control setting, perhaps with P = 1.

4,.

".4, " bS" t"'-.1-e,,l.O e'... 1.,_ , ,.;"," " "e" , ".", '. . ,-,,e'.
,
. '--'--' ' '-,' '.-.,'., ' ,'''.
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These segments are strictly interior to some set G (P1 ) for the, ne raluc

P1.

At the corners of the segments of 8Gi(P) or 8oG(1), any policy associated

with the intersecting segments can be used. There is Al > 0 such that after

a finite number of switches, we have P = I and X() is a distance ,

A, from G(l).

(c) It is possible that there will be an immediate change P - some P1 O P

at t = 0. If this occurs, we want the line segment of the graph of X()

after the switch to correspond to P1  for at least a minimum di.iance

independent of x. (This seems to be rather unrestrictive). We formalize this

as follows.

(c 1) If we do not switch at t - 0, then assume that x E some Gi(P) above..

(c 2 ) If we do switch (to some P1 V P) at t - 0. Then assume that x E so"ic

Gi(P1) above and inf d[x,8Gi(P 1 )] z, 0.
xE Gi(P1 ) ,

Remark. The assumption concerning 'points in common' to several 8G3 (P) does

not seem to be restrictive. Generally, in dynamic programming, when the state

is on the boundary of sets corresponding to different policies, any one of the

policies is optimal. Condition (A5.2) is intended to be illustrative of the

possibilities that we can allow.

"V

Adapting 116 to XE(-). By adapting the policy IT6  for use with

XE(.) we simply take as the moments of decision the moments when Xc(.)

hits the decision boundary segments.

,.~, . ,.-
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We now prove the 'almost 6-optimality' of n7-applied to XE(-). Theorem

5.4 says essentially that a 'nice' control which is almost optimal for X( will

also be almost optimal for XE(.). This justifies the use of the limit

approximations for purposes of getting good or nearly optimal controls.

Theorem 5.4. Assume (A2.2) to (A2.6), (A5.1) and (A5.2) . Let 177 denote the

policy of (A5.2) adapted to X(.) . Then

(5.1 1) v (n ,x,t' )  - v(ns, <,p)

uniformly in x . For admissible 77' and small E

(5.12) sup sup [V'(n,x,P) - V'(nE,x,P)J 4 2,

Proof. The proof is a consequence of the weak convergence in Theorems 5.1

and 5.3, the piecewise continuity properties of (A5.2) and an estimate of the

type obtained in Theorem 5.2, and we only outline some of the argument.

(a) The facts that the segments of G(I) are piecewise differentiable with

non-tangent corners and that the uncontrolled X(.) is non-degenerate imply

that the hitting times (and locations) of X6(.) on G(1) converge to those

for the limit X(.), for any initial condition outside G(1).

(b) Similarly for the hitting times and locations of the boundaries of the

Gj(P), when P 0 1.

(c) The uncontrolled segments of XE(.) converge to those of X(.). The

graphs of the controlled segments of X(.) converge uniformly to their limit

straight line segments, as discussed in the remark after Theorem 5.1.

(d) If a limit point of XE(.) or a limit point of an end point of a

segment of the graph during a control interval - is on a corner of the boundary

. .

' 
.
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of G(I) or of some Gi(P), then the limit control actions just after contact

with the boundary there is, of course, specified by the limit of the control

actions of X6(.) just after contact with the boundary. But, by (A5.2) which

of the actions associated with that boundary point are used for X( -)is

irelevent. Whatever it is, it will be used for a positive minimum distance (on

the graph).

(e) Let N((t) denote the number of distinct control actions on [0,t].

Then a proof such as would be used to prove Theorem 5.3 together with the

weak convergence and the fact that 61 > 0 can be used to show that (N((n+l)

- N(n), n < -, c > 0) is uniformly integrable. (This is then used as in

Theorem 5.2.).

(f) Let c index a weakly convergent subsequence. The limit process is

the X(.) associated with n 6. By (A5.1) and (A5.2), the particular sequence

used is irrelevent.

(g) (5.11) follows from the above facts and theorems 5.1 and 5.2.

(h) (5.12) follows from the theorem 5.2 and the fact that nt is

6-optimal for X(.). The limits of the controls (n() might depend on the

subsequence. But (5.12) holds uniformly in the subsequence.

Extensions. The arrival and service time sequences can each be correlated,

(e.g., service in 'random batches', etc.), provided that they satisfy suitable mixing

conditions. If they are correlated and state dependent, then the 'first order

perturbed test function method' of [5, Chapter 5] (see also [6]) can be adapted.

It is possible to control the service or arrival rates (marginal a',d') also.

Impulsive controls (hence piecewise constant rates) are easy to accomodate here.

".- "e-." % 1
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Otherwisc, one can introduce relaxed controls as in [6], writing (e.g.) the drift

term as 'bi(X(s),,-)mt(da) where m,(.) is the measure associated with the

relaxed control. We do need to maintain heavy traffic, of course. The

variances can also be allowed to be control dependent. There is no problem

allowing this 'impulsively', but for continuously controlled variances, there is

still some uncertainty concerning the appropriate description of the limit

problem.

For more general feedforward - branching networks, controlling the Pij

might also be of interest. One could use pij = pij + r Spij + o(vr). Then,

when the 'principal terms' are cancelled in (3.5), we are left with an additional

0(1) term-depending on {Bpij}) and this corresponds to an additional drift

associatcd with the 'marginal' control of the routing. Various types of

controlled priority service are possible - and might be the subject of a future

paper. For example, the customers might fall into various priority classes which

relate, for example, to service time distributions. We might control the priority

service subject to holding costs depending on the priority.

The average cost per unit time problem is trickier, but one can adapt the

scheme for the ergodic problem in [6]. Here (X((.), vector of elapsed times

since the last service completions or arrivals} would replace the vector {Xe(

E(.)} of [6]. Then, under appropriate ergodicity conditions concerning the

6-optimal processor, we can extend Theorem 5.4.

. .'....-.. . .
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6. A Numerical Method for Approximating the
Optimal Value Function and Control

The control problem defined by the cost (4.8), system (3.14) and the

control actions described by the possibilities associated with the off/on impulses

associated with the discussion about Figure 4.1 can be approximated by the

numerical methods studied in [9]. The method in [9] involved a Markov chain

(indexed by a 'finite difference' approximation parameter) approximation to the

optimal continuous time problem. One then showed that the sequence of value

functions for the chains converged to the optimal value function for the

continuous parameter problem, and that suitable continuous parameter

interpolations of the chain converge weakly to the optimal controlled continuous

parameter process. The methods of [9] can be readily adapted to our problem,

and only an outline will be given. The weak convergence methods used in [9]

will have to be replaced by the methods here - owing to the reflection term,

but the general idea is the same.

Let h be a finite-difference approximation parameter, and Bi  be

integral multiples of h. Let G h denote the h-grid on G = [0,B1 ] x [0,B 2].

Define aij by ijj(t) = ftaij(X(s))ds, and generally omit the x-argument in the

aij(. ) and b'(.) below. For the Markov chain approximation, the status of the

controls at any time is defined by the vector p _ (p0 ,p0 2,p1 ,p1 2), where Pa

I (resp., 0) denotes that the control is on (the link is operating normally)

(resp., closed). Recall that, when P , (1,1,1.1), we write P -1.

Let (X h) denote the approximating Markov chain, and let x denote the

canonical current state, y the canonical successor state and P1  the canonical

control which will be used at state x to bring the chain to the next state.

S
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Define Xh(.), the interpolated process to be the right continuous piecewise

constant process with interpolation intervals Ath(x,Pl). Both these intervals and

the transition probabilities ph(x,y/P,) depend on the new chosen control a"

well as on the current state. If P1 # 1, we use Ath(xPl) = 0; i.e., the

interpolation interval has zero length. In this case, several steps of {Xn) all

occur simultaneously in the interpolation Xh(.). Define Qh(X) = 2[all + a 22 -

01211 + h(1b i + lb2 ) , and let aii - a1 ) 0, i = 1,2. For P1 = 1, we use

Ath(x,P 1 ) = h2/Qh(X).

Wc now define the transition probabilites ph(x'y I P) for the chain when

P1 =1, for x,y e Gh. Let e i denote the unit vector in the ith coordinate

direction. We use

ph(x,x±eihIP 1  = 1) = tail - la 12 I + h(b')±]/Qh(X),
(6.1)

ph(x,x+ep-e 2h lP1- 1) ph(x,x-e h+e h I = 1)

= a 12 1/Qh(X).

If some x i  (the i component of x) equals zero then the transition

probability (6.1) is modified as follows, as a concatenation of two transitions,

the first being (6.1). For the second (the 'reflection') step, we distinguish two

cases.

Case 1: The 'y' argument in the ph in (6.1) is not in Gh, but x1 $ 0 or

y $ x -eCh + e2h. Then simply project (reflect) the process back to the nearest

point in Gh.

Case 2: Let x1 = 0 and y = x -elh + e2 h. Then the second transition is

back to y = x, with a probability p1 2/(l - p1 ,) and back to y = x + e2 h
with probability [1 p1 2 /(l - p1 )]. This step is to account for the

term in (3.14).

-- " m m mmm m mm l mmlmmml~m i lw l lmld ( mm | . . €" ( [ , _'i-'.4 ' ) , ) :':.



I f P1 =I always, then Xh(_) *> X( *,uncontrolled and unreflcctcd [9).

Let P denote the control used to get the current statc x. The actual

state for the problem is the pair (x,P), since the cost associated with the next O

transition depends on whether or not some element of the current control vector

is changed. Let Kh ,, 1) denote the costs associated with the transition,

when current state is x, and control P changes to P1. For Pi =I

KhxPl t~~)k(x), the holding cost only.

We now define some of the transition probabilities and costs when

P1 * 1. There are 15 possibilities, and only some typical ones will be described.

These are constructed so that the limit (as h - 0) of X() will be the

reflected controlled X(-), and so that the associated costs for Xh(.) will also

converge to that for X( ) Write P P01, P0 2 ,p' 2,pl)', P1 = O2PlP)

Let Pol 0, with other PO' 1 . Then use phx.eh PI) =I (by

-9

(A2.1), xl > 0 here) and Kh(X,p,pl) q01h + kl 01 = 1 =0 ). Now, let
P f with other POhe Then ph(x.eh Pl) lI and unrefPePte .q_2 h

1 1 20

+ 2 02=0 d For p12 = 0 and other Pt c1r, we have ph(x.The ct 1 -

-I and Kh(X,p,pl) = q12h + k 1,2= -p
1 2 =0)

Now, let P = 0 with other Pa = 1. Let P12 a gal (the reverse case

is treated anologously) and refer to Figure 6.1. The line from x to (a) is the

mean direction of the appropriate impulse, and its slope (see Section 4) is [ga 2

e crP2 2)gd 2 /g = -P12gdl/g, In order to 'simulate' this mean line, we use

Ph(x),x + e h - e2h P1 ) - Pl 2gdl/g. I - ph(xx + ehotnPy).

The instantaneous cost is Know d n 1) - klni1to pi =0n 7

Now, let p12  p02  0 with all other P~' 1 . Then ,p, - e2 1 P)

%-U

= ~~ ~ h~~~ 2= 12d KhxP+)-- ~ +klp=, =

1. Th 'im ]g] puls/ivInode o smuae' patofhi)iovo s nmely k(l w &e us

ph~xx +exh- e~ I I) plgdl/,,1I, - h~x~ + ~h PI'

The nstatanous ostis K~xPPx),, kl{ = ,p=o)
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ko O2=,p 02=0). But the 'opportunity' cost - that due to Z 2  and U°2  is

less obvious. This is obtained from the relative rates at which X 2( .) decreases

due to the effects of P,2  and P0 2  (resp.) being off. This is (resp.) P1 2gd1

and g. . Thus we use the 'opportunity' cost

h[ql2Pl 2 gdl + q 0 2 g 0 2 ]/(PI 2gdl + g.2).

The ph(x,y IP) and Kh(x,P,P,) are calculated in a similar way for all the

other possibilities.

The dynamic programming equation for our 'approximation' problem is

(6.2) Vh(xP) min [(exp- l3Lth(x,P1 ))E ph(x,y P1)Vh(y,P 1 )
P1  Y

+ Kh(x,P,P 1 )I.

The weak convergence methods of this paper can be used to show that V h(x,p)

V(x,P) = inf V(x,n). It can be shown that, for each x there is an (w,t)-
17adm

dependent control such that the approximation methods (for the control) in [9,

Chaptcr 9] can be used. For reasonable grid sizes, say 50 x 50, the numerical

problem is quite tractable.

For the numerical problem, we do not need to duplicate the dynamics of

the original system XE(.), but we can use any controlled process which has the

same controlled limit equation. See the book [9] for a fuller development of

this computational point of view for a large class of more classical problems.

wU'

'U,
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